next up previous contents index
Avanti: Grafici di esempio Su: Appendici Indietro: Potenza di un segnale dati   Indice   Indice analitico

Autocorrelazione dell'uscita di un filtro

Nel capitolo è stato affermato che, quando un processo attraversa un filtro, il processo di uscita è caratterizzato da $ \mathcal {R}$y$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$ = $ \mathcal {R}$x$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*$ \mathcal {R}$H$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$. Mostriamo che è vero.


$ \mathcal {R}$y$ \left(\vphantom{ t,t+\tau }\right.$t, t + $ \tau$ $ \left.\vphantom{ t,t+\tau }\right)$ = E$ \left\{\vphantom{ y\left( t\right) y\left( t+\tau \right) }\right.$y$ \left(\vphantom{ t}\right.$t$ \left.\vphantom{ t}\right)$y$ \left(\vphantom{ t+\tau }\right.$t + $ \tau$ $ \left.\vphantom{ t+\tau }\right)$ $ \left.\vphantom{ y\left( t\right) y\left( t+\tau \right) }\right\}$ = E$ \left\{\vphantom{ \int h\left( \alpha \right) x\left( t-\alpha \right) d\alpha \int h\left( \beta \right) x\left( t+\tau -\beta \right) d\beta }\right.$$ \int$h$ \left(\vphantom{ \alpha }\right.$$ \alpha$ $ \left.\vphantom{ \alpha }\right)$x$ \left(\vphantom{ t-\alpha }\right.$t - $ \alpha$ $ \left.\vphantom{ t-\alpha }\right)$d$ \alpha$$ \int$h$ \left(\vphantom{ \beta }\right.$$ \beta$ $ \left.\vphantom{ \beta }\right)$x$ \left(\vphantom{ t+\tau -\beta }\right.$t + $ \tau$ - $ \beta$ $ \left.\vphantom{ t+\tau -\beta }\right)$d$ \beta$ $ \left.\vphantom{ \int h\left( \alpha \right) x\left( t-\alpha \right) d\alpha \int h\left( \beta \right) x\left( t+\tau -\beta \right) d\beta }\right\}$ =

= $ \int$$ \int$h$ \left(\vphantom{ \alpha }\right.$$ \alpha$ $ \left.\vphantom{ \alpha }\right)$h$ \left(\vphantom{ \beta }\right.$$ \beta$ $ \left.\vphantom{ \beta }\right)$E$ \left\{\vphantom{ x\left( t-\alpha \right) x\left( t+\tau -\beta \right) }\right.$x$ \left(\vphantom{ t-\alpha }\right.$t - $ \alpha$ $ \left.\vphantom{ t-\alpha }\right)$x$ \left(\vphantom{ t+\tau -\beta }\right.$t + $ \tau$ - $ \beta$ $ \left.\vphantom{ t+\tau -\beta }\right)$ $ \left.\vphantom{ x\left( t-\alpha \right) x\left( t+\tau -\beta \right) }\right\}$d$ \alpha$d$ \beta$ = (se x$ \left(\vphantom{ t}\right.$t$ \left.\vphantom{ t}\right)$ è stazionario)

= $ \int$h$ \left(\vphantom{ \alpha }\right.$$ \alpha$ $ \left.\vphantom{ \alpha }\right)$$ \int$h$ \left(\vphantom{ \beta }\right.$$ \beta$ $ \left.\vphantom{ \beta }\right)$$ \mathcal {R}$x$ \left(\vphantom{ \tau +\alpha -\beta }\right.$$ \tau$ + $ \alpha$ - $ \beta$ $ \left.\vphantom{ \tau +\alpha -\beta }\right)$d$ \beta$d$ \alpha$ = $ \int$h$ \left(\vphantom{ \alpha }\right.$$ \alpha$ $ \left.\vphantom{ \alpha }\right)$$ \mathcal {R}$xy$ \left(\vphantom{ \tau +\alpha }\right.$$ \tau$ + $ \alpha$ $ \left.\vphantom{ \tau +\alpha }\right)$d$ \alpha$ = $ \mathcal {R}$xy$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*h$ \left(\vphantom{ -\tau }\right.$ - $ \tau$ $ \left.\vphantom{ -\tau }\right)$, in cui

$ \mathcal {R}$xy$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$ = $ \mathcal {R}$x$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*h$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$ è l'intercorrelazione tra x$ \left(\vphantom{ t}\right.$t$ \left.\vphantom{ t}\right)$ ed y$ \left(\vphantom{ t}\right.$t$ \left.\vphantom{ t}\right)$.


Scritto in altra forma: $ \mathcal {R}$y$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$ = $ \mathcal {R}$x$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*h$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*h$ \left(\vphantom{ -\tau }\right.$ - $ \tau$ $ \left.\vphantom{ -\tau }\right)$, e dunque antitrasformando si ottiene $ \mathcal {P}$y$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ = $ \mathcal {P}$x$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ . H$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ . H*$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ = $ \mathcal {P}$x$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ . $ \left\vert\vphantom{ H\left ( f\right ) }\right.$H$ \left(\vphantom{ f}\right.$f$ \left.\vphantom{ f}\right)$ $ \left.\vphantom{ H\left( f\right) }\right\vert^{2}_{}$ = $ \mathcal {F}$$ \left\{\vphantom{ \mathcal{R}_{x}\left( \tau \right) *\mathcal{R}_{H}\left( \tau \right) }\right.$$ \mathcal {R}$x$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$*$ \mathcal {R}$H$ \left(\vphantom{ \tau }\right.$$ \tau$ $ \left.\vphantom{ \tau }\right)$ $ \left.\vphantom{ \mathcal{R}_{x}\left( \tau \right) *\mathcal{R}_{H}\left( \tau \right) }\right\}$.



alef@infocom.uniroma1.it
2001-06-01