next up previous contents index
Avanti: Trasformata di Fourier Su: Appendice Indietro: Algebra Vettoriale   Indice   Indice analitico

Esempi di Sviluppo in serie

Nello schema che segue, sono mostrate le ampiezze delle componenti armoniche Xn per alcuni segnali periodici di periodo T, di cui è fornita l'epressione nel tempo per $ \left\vert\vphantom{ t}\right.$t$ \left.\vphantom{ t}\right\vert$ < T/2.

Onda quadra simmetrica

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
+1 & \left\vert t\right\vert <T/4\\
-1 & T/4\leq \left\vert t\right\vert <T/2
\end{array}}\right.$$\displaystyle \begin{array}{cr}
+1 & \left\vert t\right\vert <T/4\\
-1 & T/4\leq \left\vert t\right\vert <T/2
\end{array}$

Xn = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
\hbox {sinc}\left( \frac{n}{2}\right) & n\neq 0\\
0 & n=0
\end{array}}\right.$$\displaystyle \begin{array}{cr}
\hbox {sinc}\left( \frac{n}{2}\right) & n\neq 0\\
0 & n=0
\end{array}$

 

\resizebox* {0.45\textwidth}{!}{\includegraphics{cap2/f2.9a.ps}}

Treno di impulsi rettangolari

 

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
+1 & \left\vert t\right\vert <\tau /2\\
0 & \tau /2\leq \left\vert t\right\vert <T/2
\end{array}}\right.$$\displaystyle \begin{array}{cr}
+1 & \left\vert t\right\vert <\tau /2\\
0 & \tau /2\leq \left\vert t\right\vert <T/2
\end{array}$

Xn = $\displaystyle {\frac{\tau }{T}}$sinc$\displaystyle \left(\vphantom{ \frac{n\tau }{T}}\right.$$\displaystyle {\frac{n\tau }{T}}$ $\displaystyle \left.\vphantom{ \frac{n\tau }{T}}\right)$

 

\resizebox* {0.45\textwidth}{!}{\includegraphics{cap2/f2.9b.ps}}

Onda triangolare simmetrica

 

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = 1 - 4$\displaystyle {\frac{\left\vert t\right\vert }{T}}$    $\displaystyle \left\vert\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right\vert$ < T/2

Xn = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
\hbox {sinc}^{2}\left( \frac{n}{2}\right) & n\neq 0\\
0 & n=0
\end{array}}\right.$$\displaystyle \begin{array}{cr}
\hbox {sinc}^{2}\left( \frac{n}{2}\right) & n\neq 0\\
0 & n=0
\end{array}$

 

\resizebox* {0.45\textwidth}{!}{\includegraphics{cap2/f2.9c.ps}}

Dente di sega simmetrico

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = 2$\displaystyle {\frac{t}{\tau }}$    $\displaystyle \left\vert\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right\vert$ < T/2

Xn = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
j\frac{\left( -1\right) ^{n}}{n\pi } & n\neq 0\\
0 & n=0
\end{array}}\right.$$\displaystyle \begin{array}{cr}
j\frac{\left( -1\right) ^{n}}{n\pi } & n\neq 0\\
0 & n=0
\end{array}$

 

\resizebox* {0.45\textwidth}{!}{\includegraphics{cap2/f2.9d.ps}}

Rettificata a singola semionda

 

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
\sin \omega _{0}t & 0\leq t<T/2\\
0 & -T/2\leq t<0
\end{array}}\right.$$\displaystyle \begin{array}{cr}
\sin \omega _{0}t & 0\leq t<T/2\\
0 & -T/2\leq t<0
\end{array}$

Xn = $\displaystyle \left\{\vphantom{ \begin{array}{cl}
\frac{1}{\pi \left( 1-n^{2}\r...
...ari}\\
-j\frac{1}{4} & n=\pm 1\\
0 & \hbox {altrimenti}
\end{array}}\right.$$\displaystyle \begin{array}{cl}
\frac{1}{\pi \left( 1-n^{2}\right) } & n\: \hbox {pari}\\
-j\frac{1}{4} & n=\pm 1\\
0 & \hbox {altrimenti}
\end{array}$

 

\resizebox* {0.45\textwidth}{0.22\textheight}{\includegraphics{cap2/f2.9e.ps}}

Rettificata a onda intera

x$\displaystyle \left(\vphantom{ t}\right.$t$\displaystyle \left.\vphantom{ t}\right)$ = $\displaystyle \left\vert\vphantom{ \sin \omega _{0}t}\right.$sin$\displaystyle \omega_{0}^{}$t$\displaystyle \left.\vphantom{ \sin \omega _{0}t}\right\vert$

Xn = $\displaystyle \left\{\vphantom{ \begin{array}{cr}
\frac{2}{\pi \left( 1-n^{2}\right) } & n\: \hbox {pari}\\
0 & \hbox {altrimenti}
\end{array}}\right.$$\displaystyle \begin{array}{cr}
\frac{2}{\pi \left( 1-n^{2}\right) } & n\: \hbox {pari}\\
0 & \hbox {altrimenti}
\end{array}$

 

\resizebox*{0.45\textwidth}{!}{\includegraphics{cap2/f2.9f.ps}}



Sottosezioni
next up previous contents index
Avanti: Trasformata di Fourier Su: Appendice Indietro: Algebra Vettoriale   Indice   Indice analitico
alef@infocom.uniroma1.it
2001-06-01